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SUMMARY

A model of random polycrystals of porous laminates is introduced to provide a means for

studying geomechanical properties of double-porosity reservoirs. Calculations on the resulting

earth reservoir model can proceed semi-analytically for studies of either the poroelastic or trans-

port coefficients. Rigorous bounds of the Hashin-Shtrikman type provide estimates of overall bulk

and shear moduli, and thereby also provide rigorous error estimates for geomechanical constants

obtained from up-scaling based on a self-consistent effective medium method. The influence of

hidden (or presumed unknown) microstructure on the final results can then be evaluated quantita-

tively. Detailed descriptions of the use of the model and some numerical examples showing typical

results for the double-porosity poroelastic coefficients of a heterogeneous reservoir are presented.

1. INTRODUCTION

Rapid progress in development of rigorous bounding methods for material coefficients in het-

erogeneous media [1, 2] has been made over the last fifty years. Effective medium theory, although

very useful in many practical circumstances, nevertheless has not made such rapid progress. So a

question that naturally arises is whether it might be possible to construct new effective medium

formulas directly from the known bounds? Skeptics will immediately ask: Why do we need to do

this at all if bounds are available? But the answer to this question is most apparent in poromechan-

ics, where the bounds are frequently too far apart to be of much use in engineering and, especially,

in field applications.

Hill [3] was actually the first to try constructing estimates from bounds. First he showed that

the Voigt [4] and Reuss [5] averages/estimates in elasticity were in fact upper and lower bounds,

respectively. Then he proceeded to suggest that estimates of reasonable accuracy were given by

the arithmetic or geometric means obtained by averaging these two bounds together. Thus, the
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Voigt-Reuss-Hill estimates were born. Better bounds than the Voigt and Reuss bounds are now

known and no doubt some attempts to update Hill’s approach have been made. However, to make a

direct connection to traditional approaches of effective medium theory, we apply a more technical

procedure here in order to obtain estimates of up-scaled constants using the known analytical

structure of the bounds, especially for Hashin-Shtrikman [6] bounds. When this mathematical

structure is not known — as might be the case if the bounds are expressed algorithmically rather

than as analytical formulas — then we will see that it proves very worthwhile to expend the

additional effort required to determine this structure. Whenever it is possible to carry the analysis

further than has been done in the published literature, a self-consistent effective medium formula

is fairly straightforward to obtain from the resulting expressions. The self-consistent predictions

then lie within the bounds, as might be expected and desired.

In Section 2, results from double-porosity geomechanics analysis are presented. These results

are general, and do not depend explicitly on the spatial arrangement or microstructure of the

two porous constituents. Microstructure enters these formulas only through the overall drained

bulk modulus K∗

d . Then, in Section 3, a preferred model microstructure — that of a locally

layered medium — is imposed. This microstructure has the advantage that it forms hexagonal (or

transversely isotropic) “crystals” locally. Then, if we assume these crystals, or grains, are jumbled

together randomly to form an overall isotropic medium, we have the “random polycrystal of porous

laminates” reservoir model. Hashin-Shtrikman bounds are known for such polycrystals composed

of grains having hexagonal symmetry. So bounds are easily found. From the form of the bounds, we

also obtain estimates of both overall bulk modulus and shear modulus, thus completing the semi-

analytical poromechanics model. Examples are computed in Section 4, and results summarized in

the final section.

Although the language we use here tends to emphasize the analogy to polycrystals of laminates,

the reader should keep in mind that the equations of elasticity — and for present purposes (we
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do not treat permeability here) also the equations of poroelasticity — are scale invariant. So the

mathematics is the same whether the layering we are considering takes place at the scale of microns,

meters, or kilometers. However, there is an implicit limitation that the scale considered cannot be

so small that the continuum hypothesis fails to be valid.

2. DOUBLE-POROSITY GEOMECHANICS

The main results used here can be derived using uniform expansion, or self-similar, methods

analogous to ideas used in thermoelasticity by Cribb [7] and in single-porosity poroelasticity by

Berryman and Milton [8]. Cribb’s method provided a simpler and more intuitive derivation of

Levin’s earlier results on thermoelastic expansion coefficients [9]. Our results also provide a simpler

derivation of results obtained by Berryman and Pride [10] for the double-porosity coefficients.

Related methods in other applications to micromechanics are called “the theory of uniform fields”

by some authors [11].

First assume two distinct phases at the macroscopic level: a porous matrix phase with the

effective properties K
(1)
d , G

(1)
d , K

(1)
m , φ(1) (which are drained bulk and shear moduli, grain/mineral

bulk modulus, and porosity of phase 1 with analogous definitions for phase 2), occupying volume

fraction V (1)/V = v(1) of the total volume and a macroscopic crack or joint phase occupying the

remaining fraction of the volume V (2)/V = v(2) = 1− v(1). The key feature distinguishing the two

phases — and therefore requiring this analysis — is the very high fluid permeability of the crack or

joint phase and the relatively lower permeability (but higher fluid volume content) of the matrix

phase.

In the double-porosity model, there are three distinct pressures: confining pressure δpc, pore-

fluid pressure δp
(1)
f [for the storage porosity], and joint-fluid pressure δp

(2)
f [for the transport poros-

ity]. Treating δpc, δp
(1)
f , and δp

(2)
f as the independent variables in our double porosity theory, we de-
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fine the dependent variables δe ≡ δV/V , δζ(1) = (δV
(1)
φ −δV

(1)
f )/V , and δζ(2) = (δV

(2)
φ −δV

(2)
f )/V ,

which are respectively the total volume dilatation, the increment of fluid content in the matrix

phase, and the increment of fluid content in the joints. The fluid in the matrix is the same as that

in the cracks or joints, but the two fluid regions may be in different states of average stress and,

therefore, need to be distinguished by their respective superscripts.

Linear relations among strain, fluid content, and pressure take the symmetric form

















δe

−δζ(1)

−δζ(2)

















=

















a11 a12 a13

a12 a22 a23

a13 a23 a33

































−δpc

−δp
(1)
f

−δp
(2)
f

















, (1)

following Berryman and Wang [12] and Lewallen and Wang [13]. It is easy to check that a11 = 1/K∗

d ,

where K∗

d is the overall drained bulk modulus of the system. We now find analytical expressions

for the remaining five constants for a binary composite system.

The components of the system are themselves porous materials 1 and 2, but each is assumed

to be what we call a “Gassmann material” satisfying









δe(1)

−δζ(1)/v(1)









=
1

K
(1)
d









1 −α(1)

−α(1) α(1)/B(1)

















−δp
(1)
c

−δp
(1)
f









(2)

for material 1 and a similar expression for material 2. The new constants appearing on the right are

the drained bulk modulus K
(1)
d of material 1, the corresponding Biot-Willis [14] coefficient α(1), and

the Skempton [15] coefficient B(1). The volume fraction v(1) appears here in order to correct for the

difference between a global fluid content and the corresponding local variable for material 1. The

main special characteristic of a Gassmann [16] porous material is that it is composed of only one

type of solid constituent, so it is “microhomogeneous” in its solid component, and in addition the

porosity is randomly, but fairly uniformly, distributed so there is a well-defined constant porosity

φ(1) associated with material 1, etc.
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To proceed further, we ask this question: Is it possible to find combinations of δpc = δp
(1)
c =

δp
(2)
c , δp

(1)
f , and δp

(2)
f so that the expansion or contraction of the system is spatially uniform or

self-similar? Or equivalently, can we find uniform confining pressure δpc, and pore-fluid pressures

δp
(1)
f and δp

(2)
f , so all these scalar conditions can be met simultaneously? If so, then results for

system constants can be obtained purely algebraically without ever having to solve equilibrium

equations of the mechanics. We initially set δpc = δp
(1)
c = δp

(2)
c , as this condition of uniform

confining pressure is clearly a requirement for the self-similar thought experiment to be a valid

solution of stress equilibrium equations.

So, the first condition to be considered is the equality of the strains of the two constituents:

δe(1) = − 1

K
(1)
d

(δpc − α(1)δp
(1)
f ) = δe(2) = − 1

K
(2)
d

(δpc − α(2)δp
(2)
f ). (3)

If this condition is satisfied, then the two constituents are expanding or contracting at the same

rate and it is clear that self-similarity prevails, since

δe = v(1)δe(1) + v(2)δe(2) = δe(1) = δe(2). (4)

If we imagine that δpc and δp
(1)
f are fixed, then we need an appropriate value of δp

(2)
f , so that (3)

is satisfied. This requires that

δp
(2)
f = δp

(2)
f (δpc, δp

(1)
f ) =

1 − K
(2)
d /K

(1)
d

α(2)
δpc +

α(1)K
(2)
d

α(2)K
(1)
d

δp
(1)
f , (5)

showing that, for undrained conditions, δp
(2)
f can almost always be chosen so the uniform expansion

takes place.

Using (5), we now eliminate δp
(2)
f from the remaining equality so

δe = −
[

a11δpc + a12δp
(1)
f + a13δp

(2)
f (δpc, δp

(1)
f )
]

= δe(1) = − 1

K
(1)
d

(δpc − α(1)δp
(1)
f ), (6)

where δp
(2)
f (δpc, δp

(1)
f ) is given by (5). Making the substitution and then noting that δpc and δp

(1)
f

were chosen independently and arbitrarily, we find the resulting coefficients must each vanish. The
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two equations we obtain are

a11 + a13

(

1 − K
(2)
d /K

(1)
d

)

/α(2) = 1/K
(1)
d (7)

and

a12 + a13

(

α(1)K
(2)
d /α(2)K

(1)
d

)

= −α(1)/K
(1)
d . (8)

Since a11 is assumed to be known, (7) can be solved directly, giving

a13 = − α(2)

K
(2)
d

(

1 − K
(1)
d /K∗

d

1 − K
(1)
d /K

(2)
d

)

. (9)

Similarly, with a13 known, substituting into (8) gives

a12 = − α(1)

K
(1)
d

(

1 − K
(2)
d /K∗

d

1 − K
(2)
d /K

(1)
d

)

. (10)

So, formulas for three of the six coefficients are now known. [Also, note the similarity of the

formulas (9) and (10), i.e., interchanging indices 1 and 2 on the right hand sides takes us from one

expression to the other.]

To evaluate the remaining coefficients, we consider what happens to fluid increments during the

self-similar expansion. We treat only material 1, but the equations for material 2 are completely

analogous. From the preceding equations,

δζ(1) = a12δpc + a22δp
(1)
f + a23δp

(2)
f (δpc, δp

(1)
f )

=
v(1)

K
(1)
d

x
[

−α(1)δpc + (α(1)/B(1))δp
(1)
f

]

. (11)

Again substituting for δp
(2)
f (δpc, δp

(1)
f ) from (5) and noting that the resulting equation contains

arbitrary values of δpc and δp
(1)
f , the coefficients of these terms must vanish separately. Resulting

equations are

a12 + a23(1 − K
(2)
d /K

(1)
d )/α(2) = −α(1)v(1)/K

(1)
d , (12)
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and

a22 + a23

(

α(1)K
(2)
d /α(2)K

(1)
d

)

= α(1)v(1)/B(1)K
(1)
d . (13)

Solving these equations, we obtain

a23 =
K

(1)
d K

(2)
d α(1)α(2)

[

K
(2)
d − K

(1)
d

]2

[

v(1)

K
(1)
d

+
v(2)

K
(2)
d

− 1

K∗

d

]

, (14)

and

a22 =
v(1)α(1)

B(1)K
(1)
d

−
(

α(1)

1 − K
(1)
d /K

(2)
d

)2 [

v(1)

K
(1)
d

+
v(2)

K
(2)
d

− 1

K∗

d

]

. (15)

Performing the corresponding calculation for δζ(2) produces formulas for a32 and a33. Since (14) is

already symmetric in component indices, the formula for a32 provides nothing new. The formula

for a33 is easily seen to be identical in form to a22, but indices 1 and 2 are interchanged.

Formulas for all five of the nontrivial coefficients of double porosity have now been determined.

These results also show how the constituent properties Kd, α, B up-scale at the macrolevel for a

two-constituent composite [10, 12]. We find

α = −a12 + a13

a11
=

α(1)(K∗

d − K
(2)
d ) + α(2)(K

(1)
d − K∗

d)

K
(1)
d − K

(2)
d

, (16)

and

1

B
= −a22 + 2a23 + a33

a12 + a13
. (17)

Note that all the important formulas [(8),(9),(11)-(14)] depend on the overall drained bulk

modulus K∗

d of the system. So far this quantity is unknown and therefore must still be determined

independently either by experiment or by another analytical method.

It should also be clear that some parts (but not all) of the preceding analysis generalize to the

multi-porosity problem (i.e., more than two porosity types). A discussion of the issues surrounding

solvability of the multiporosity problem has been presented elsewhere [17].
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FIG. 1: Schematics of the random polycrystals of laminates model (on the left) and a blowup (on the right)

showing a detail that illustrates how each one of the grains is composed of two very different types of porous

materials: one being a storage material (high porosity and low permeability) and one a transport material

(low porosity and high permeability).

3. UP-SCALING MODEL FOR GEOMECHANICS OF RESERVOIRS

3.1 Elasticity of layered materials

Next, to determine the overall drained (or undrained) bulk and shear moduli of the reservoir,

assume a typical building block of the random system is a small (relative to the size of the reservoir)

“grain” of laminate material whose elastic response for a transversely isotropic (hexagonal) system
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can be described locally by:










































σ11

σ22

σ33

σ23

σ31

σ12











































=











































c11 c12 c13

c12 c11 c13

c13 c13 c33

2c44

2c44

2c66





















































































e11

e22

e33

e23

e31

e12











































, (18)

where σij are the usual stress components for i, j = 1 − 3 in Cartesian coordinates, with 3 (or z)

being the axis of symmetry (the lamination direction for such a layered material). Displacement ui

is then related to strain component eij by eij = (∂ui/∂xj + ∂uj/∂xi)/2. This definition introduces

some convenient factors of two into the 44, 55, 66 components of the stiffness matrix shown in (18).

For definiteness we also assume that the stiffness matrix in (18) arises from the lamination of

N isotropic constituents having bulk and shear moduli Kn, µn, in the N > 1 layers present in each

building block. It is important that the thicknesses dn always be in the same proportion in each

of these laminated blocks, so that fn = dn/
∑

n′ dn′ . But the order in which layers were added

to the blocks is not important, as Backus’s formulas [18] for the constants show. For the overall

quasistatic (long wavelength) behavior of the system we are studying, Backus’s results (also see

[1, 19–21]) state that

c33 =
〈

1
K+4µ/3

〉−1
, c13 = c33

〈

K−2µ/3
K+4µ/3

〉

,

c44 =
〈

1
µ

〉−1
, c66 = 〈µ〉 ,

c11 =
c2
13

c33
+ 4c66 − 4

〈

µ2

K+4µ/3

〉

, c12 = c11 − 2c66.

(19)

This bracket notation can be correctly viewed as a line integral along the symmetry axis x3. The

bulk modulus Kn and shear modulus µn displayed in these averages can be either the drained or

the undrained moduli for the individual layers. For the undrained case, the results are inherently

assumed either to apply at very high frequencies, such as ultrasonic frequencies in laboratory
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experiments, or to situations wherein each layer is physically isolated so that fluid increments

cannot move from one porous layer to the next.

The bulk modulus for each laminated grain is that given by the compressional Reuss average

KR of the corresponding compliance matrix sij [the inverse of the usual stiffness matrix cij , whose

nonzero components are shown in (18)]. The result is e = e11 + e22 + e33 = σ/Keff , where

1/Keff = 1/KR = 2s11 + 2s12 + 4s13 + s33.

Even though Keff = KR is the same for every grain, since the grains themselves are not isotropic,

the overall bulk modulus K∗ of the random polycrystal does not necessarily have the same value as

KR for the individual grains [3]. Hashin-Shtrikman bounds on K∗ for random polycrystals whose

grains have hexagonal symmetry [22, 23] show in fact that the KR value lies outside the bounds

in many situations [21].

3.2 Bounds for random polycrystals

3.2.1 Voigt and Reuss bounds: hexagonal symmetry

For hexagonal symmetry, the nonzero stiffness constants are: c11, c12, c13 = c23, c33, c44 = c55,

and c66 = (c11 − c12)/2.

The Voigt [4] average for bulk modulus of hexagonal systems is well-known to be

KV = [2(c11 + c12) + 4c13 + c33] /9. (20)

Similarly, for the overall shear modulus G∗, we have

GV =
1

5
(Gv

eff + 2c44 + 2c66) , (21)

where the new term appearing here is essentially defined by (21) and given explicitly by

Gv
eff = (c11 + c33 − 2c13 − c66)/3. (22)

The quantity Gv
eff is the energy per unit volume in a grain when a “pure uniaxial shear” strain of
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unit magnitude [i.e., (e11, e22, e33) = (1, 1,−2)/
√

6], whose main compressive strain is applied to

the grain along its axis of symmetry [21, 24].

Note that the concept of “pure uniaxial shear” strain (or stress) is based on the observation

that if a uniaxial principal strain (or stress) of magnitude 3 is applied along the symmetry axis, it

can be decomposed according to (0, 0, 3)T = (1, 1, 1)T − (1, 1,−2)T into a pure compression and a

pure shear contribution, which is then called for the sake of brevity the “pure uniaxial shear.”

The Reuss [5] average KR for bulk modulus can also be written in terms of stiffness coefficients

as

1

KR − c13
=

1

c11 − c66 − c13
+

1

c33 − c13
. (23)

The Reuss average for shear is

GR =

[

1

5

(

1

Gr
eff

+
2

c44
+

2

c66

)]−1

, (24)

that defines Gr
eff – i.e., the energy per unit volume in a grain when a pure uniaxial shear stress of

unit magnitude [i.e., (σ11, σ22, σ33) = (1, 1,−2)/
√

6], whose main compressive pressure is applied

to a grain along its axis of symmetry.

For each grain having hexagonal symmetry, two product formulas found by Berryman [24] hold:

3KRGv
eff = 3KV Gr

eff = ω+ω−/2 = c33(c11 − c66) − c2
13. The symbols ω± stand for the quasi-

compressional and quasi-uniaxial-shear eigenvalues for the crystalline grains. Thus, it follows that

Gr
eff = KRGv

eff/KV (25)

is a general formula, true for hexagonal symmetry.

3.2.2 Hashin-Shtrikman bounds

It has been shown elsewhere [21, 24] that the Peselnick-Meister-Watt [22, 23] bounds for bulk

modulus of a random polycrystal composed of hexagonal (or transversely isotropic) grains are given

12



by

K±

PM =
KV (Gr

eff + ζ±)

(Gv
eff + ζ±)

=
KRGv

eff + KV ζ±
Gv

eff + ζ±
, (26)

where Gv
eff (Gv

eff ) is the uniaxial shear energy per unit volume for a unit applied shear strain (stress).

The second equality follows directly from the product formula (25). Parameters ζ± are defined by

ζ± =
G±

6

(

9K± + 8G±

K± + 2G±

)

. (27)

In (27), values of G± (shear moduli of isotropic comparison materials) are given by inequalities

0 ≤ G− ≤ min(c44, G
r
eff , c66), (28)

and

max(c44, G
v
eff , c66) ≤ G+ ≤ ∞. (29)

The values of K± (bulk moduli of isotropic comparison materials) are then given by algorithmic

equalities

K± =
KV (Gr

eff − G±)

(Gv
eff − G±)

, (30)

derived by [22] and [23]. Also see [21].

Bounds G±

hex (+ is upper bound, − is the lower bound) on the shear moduli for random poly-

crystals of hexagonal crystals are then given by

1

G±

hex + ζ±
=

1

5

[ 1 + γ±(KV − K±)

Gv
eff + ζ± + δ±(KV − K±)

+
2

c44 + ζ±
+

2

c66 + ζ±

]

, (31)

where γ± and δ± are given by

γ± =
1

K± + 4G±/3
, and δ± =

5G±/2

K± + 2G±

. (32)

KV is the Voigt average of the bulk modulus as defined previously.

13



Table 1. Input Parameters for Weber Sandstone Model of Double-Porosity System.

Ks K
(1)
s K

(1)
d G

(1)
d φ(1) K

(2)
s K

(2)
d G

(2)
d φ(2)

(GPa) (GPa) (GPa) (GPa) (GPa) (GPa) (GPa)

27.9 28.0 19.3 20.2 0.095 27.0 0.24 0.60 0.095

Note: Porosity φ is dimensionless.

4. EXAMPLE: WEBER SANDSTONE

Weber sandstone is one possible host rock for which the required elastic constants have been

measured by Coyner [25]. Table 1 displays the values needed in the double-porosity theory

presented here. These values follow from Coyner’s data if we assume the stiffer phase occupies

about 92% of the volume and the more compliant phase the remaining 8% of total volume.

The drained bulk moduli of the storage and fracture phases are used in the effective medium

theory of Section 3 to determine the overall drained and undrained bulk moduli of the random

polycrystal of laminates system. Results for the self-consistent estimates [21] and the upper and

lower bounds for the bulk moduli are all displayed in Figure 2. We see the undrained moduli are

nearly indistinguishable, but the drained constants show some dispersion.

Similarly, we show bounds and self-consistent estimates for the overall shear modulus of this

model reservoir in Figure 3. Both undrained and drained shear moduli show some dispersion.

Note that a correction must be applied to (31) before computing the self-consistent effective

constants. The self-consistent estimates for bulk modulus are found correctly from the bounds (26)

by taking K± → K∗, G± → G∗, and therefore ζ± → ζ∗. The resulting formula is

K∗ = KV
(Gr

eff + ζ∗)

(Gv
eff + ζ∗)

. (33)

The self-consistent formula for shear modulus requires more effort. The difficulty is that the
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FIG. 2: Bulk modulus bounds and self-consistent estimates for the random polycrystal of porous laminates

model of a Weber sandstone reservoir.

formula given in (31) has already made use of a constraint that is only true along the bounding

curves defining the upper and lower bounds on shear modulus. Since the self-consistent estimate

always falls at points away from this curve, a more general result must be employed. When the

inappropriate constraint is replaced by the general formula and then (33) is substituted, we find

instead that the self-consistent formula for shear modulus is given by

1

G∗ + ζ∗
=

1

5

(

1 + γ∗(KV − K∗)

Gv
eff + ζ∗

+
2

c44 + ζ∗
+

2

c66 + ζ∗

)

, (34)

where γ∗ = 1/(K∗ + 4G∗/3). The main difference is that the denominator of the first term on the

right hand side is simpler than it is in the formulas for the shear modulus bounds.
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FIG. 3: Shear modulus bounds and self-consistent estimates for the random polycrystal of porous laminates

model of a Weber sandstone reservoir.

Observed dispersion is small over the range of volume fractions considered. Then these drained

values K∗

d , K±

d are used in the formulas of Sec. 2 to determine both estimates and bounds on the

double-porosity coefficients. These results are then displayed in Figure 4, which is the main result

of this paper. Note that the curves for a11 essentially repeat results shown in Figure 2, but for the

compliance 1/K∗

d , instead of the stiffness K∗

d .

The coefficients a12, a22, and a23 show little dispersion. This is natural for a12 and a22 because

the storage material contains no fractures, and therefore is not sensitive to fracture compliance,

whereas those mechanical effects on the overall reservoir response can be very large. The behavior

of a23 also shows little dispersion as this value is always quite close to zero [10, 12]. The two
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FIG. 4: Values of double-porosity coefficients aij for a system similar to Weber sandstone. Values used for

the input parameters are listed in Table 1. For each coefficient, three curves are shown, depending on

which estimate of the overall bulk modulus is used: lower bound (dot-dash line), self-consistent (solid line),

or upper bound (dashed line).

remaining coefficients show a significant level of dispersion are a13 and a33, where the third stress

is the pore pressure p
(2)
f of the fracture or joint phase. We generally expect that the joint phase

is most tightly coupled to, and therefore most sensitive to, the fluctuations in overall drained bulk

modulus K∗

d . So all these results are qualitatively consistent with our intuition.

Since we have analytical formulas for all the aij’s, it is straightforward to check that the observed

dispersion in a13 and a33 is directly proportional to the dispersion in 1/K∗

d (or, equivalently, a11).
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5. CONCLUSIONS

The methods presented have been successfully applied to determine geomechanical parameters

for one reservoir model assuming Weber sandstone is the host rock. Although the details differ, the

general ideas used above for elastic and poroelastic constants can also be used to obtain bounds

and estimates of electrical formation factor and fluid permeability for the same random polycrystal

of porous laminates model.

The analysis for permeability for this model requires some extra care, and so we will defer this

part of the work to a future contribution.
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